Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

B. Sridhar,^a N. Srinivasan^b and R. K. Rajaram^a*

^aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, and ^bDepartment of Physics, Thiagarajar College, Madurai 625 009, India

Correspondence e-mail: sshiya@yahoo.com

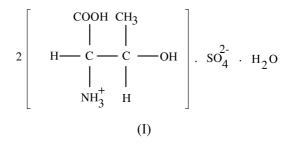
Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.032 wR factor = 0.094 Data-to-parameter ratio = 8.1

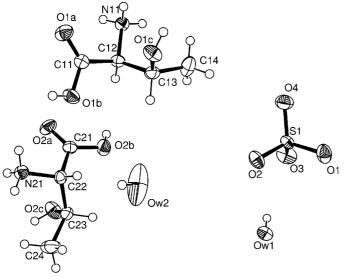
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis(L-threoninium) sulfate monohydrate


In the title compound, $2C_4H_{10}NO_3^+ \cdot SO_4^{2-} \cdot H_2O$, both threoninium molecules have a *gauche* II form for the C^{γ} and *gauche* I form for the O^{γ}. The sulfate anion links the cation in an infinite manner through hydrogen bonds along the *b* and *c* axes. The two water molecules on the twofold axes link the sulfate groups and one of the cations.

Received 22 May 2001 Accepted 31 May 2001 Online 15 June 2001


Comment

Threonine is the isometric form of amino acids containing more than one asymmetric C atom. The crystal structures of DL-threonine (Shoemaker *et al.*, 1950), L-threonine (Shoemaker *et al.*, 1950) and L-allothreonine (Swaminathan & Srinivasan, 1975) have been reported. In the present study, the threonine complex with sulfuric acid, (I), has been investigated.

The geometries of the L-threoninium cations A and B are as expected (Fig. 1 and Table 1). In cation A, the O1A-C11-C12-N11 and O1B-C11-C12-N11 torsion angles are -12.6 (4) and 167.9 (3)°, respectively, and the corresponding torsion angles in B are -8.3 (4) and 172.1 (3)°. This tendency towards non-planarity is also found in various amino acids (Lakshiminarayanan *et al.*, 1967). The side-chain conformation is given by the torsion angles about $C^{\alpha} - C^{\beta}$, giving the orientation of the γ atom with respect to N (Lakshiminarayanan *et al.*, 1967). These angles are close to 60, 180 and 300°. In the present case, the C^{γ} atom moves to a *gauche* II form [-49.2 (4) and -48.1 (4)°] and the O^{γ} atom to a *gauche* I form [75.8 (3) and 78.6 (3)°] for both molecules.

The sulfate anion forms hydrogen bonds with threoninium molecules *A* and *B* (Fig. 2 and Table 2). Threonium molecule *A* is engaged in a three-centred zigzag (Z1) head-to-tail sequence with N11-H11C···O1A($-x + \frac{1}{2}, y + \frac{1}{2}, -z + 2$) and N11-H11C···O2A($-x + \frac{1}{2}, y - \frac{1}{2}, -z + 2$) hydrogen bonds connecting 2₁-related amino acids (Vijayan, 1988). The O^{γ} atom of threoninium molecule *A*, as acceptor, links the carboxyl O atom of threoninium molecule *B* through a strong hydrogen bond, O2B-H2B···O1C(x, y + 1, z). The two water molecules, lying on the twofold axes, link (i) the sulfate groups

axis.

Views of the two independent threonine cations showing the atomic numbering scheme and 50% probability displacement ellipsoids (Johnson, 1976).

and (ii) threoninium molecule B through the O2C atom. One

of the water molecules, as acceptor, links the amino group of

threoninium molecule B, N21–H21B···OW1(x, y, 1 + z). Two

bifurcated hydrogen bonds are observed for the N21 amino group with sulfate O atoms through H21A and H21C. A fourcentre hydrogen bond is observed in the case of N11-H11C

involving the sulfate O atom and the double-bonded O atom

of the carboxyl group of both molecules, connecting all the

moieties in the structure (Jeffrey & Saenger, 1991). The sulfate

anion links through the N11 atom of three threoninium A

molecules, resulting in infinite chains along the b axis. The O3

atom of the sulfate anion links the N21 atoms of two threo-

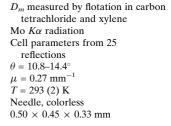
ninium B molecules, resulting in infinite chains along the c

Experimental

Crystals of (I) were obtained from an aqueous solution of a 2:1 stoichiometric ratio of L-threonine and sulfuric acid.

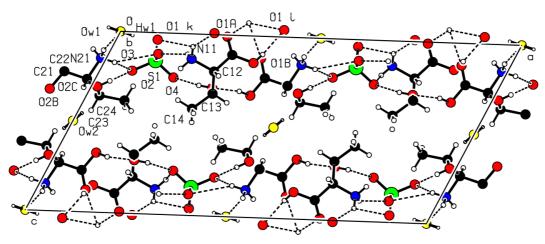
Crystal data $2C_4H_{10}NO_3^+ \cdot SO_4^{2-} \cdot H_2O$ $M_r = 354.34$ Monoclinic, C2 a = 23.096 (4) Å b = 6.281 (9) Å c = 11.648 (1) Å $\beta = 116.122$ (9)° V = 1517 (2) Å³ Z = 4 $D_x = 1.551$ Mg m⁻³ $D_m = 1.54$ Mg m⁻³

Data collection


Enraf–Nonius sealed-tube diffractometer ω –2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.869, T_{\max} = 0.914$

1872 measured reflections1732 independent reflections

1675 reflections with $I > 2\sigma(I)$


Refinement

Refinement on F^2 w $R[F^2 > 2\sigma(F^2)] = 0.032$ w $wR(F^2) = 0.094$ for the second seco

 $\begin{aligned} R_{\text{int}} &= 0.018\\ \theta_{\text{max}} &= 25.0^{\circ}\\ h &= -1 \rightarrow 27\\ k &= -1 \rightarrow 7\\ l &= -13 \rightarrow 12\\ \text{25 standard reflections}\\ \text{every 3 reflections}\\ \text{frequency: 60 min}\\ \text{intensity decay: none} \end{aligned}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0764P)^{2} + 1.0496P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* Extinction coefficient: 0.026 (2) Absolute structure: (Flack, 1983) Flack parameter = -0.07 (10)

Figure 2 Packing diagram of the molecule viewed down the *b* axis.

Table 1	
Selected torsion	angles (°).

O1A-C11-C12-N11	-12.6(4)	O2A-C21-C22-N21	-8.3(4)
N11-C12-C13-O1C	75.8 (3)	N21-C22-C23-O2C	78.6 (3)
N11-C12-C13-C14	-49.2 (4)	N21-C22-C23-C24	-48.1 (4)

 Table 2

 Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1B−H1B···O1 ⁱ	0.82	1.89	2.666 (3)	157
$N11 - H11A \cdots O4^{ii}$	0.89	2.30	2.927 (5)	128
$N11 - H11B \cdot \cdot \cdot O3^{iii}$	0.89	2.04	2.761 (4)	137
$N11-H11C\cdots O1A^{iv}$	0.89	2.10	2.846 (4)	141
$N11 - H11C \cdot \cdot \cdot O2A^{v}$	0.89	2.33	2.837 (3)	117
$N11-H11C\cdots O1^{ii}$	0.89	2.58	3.052 (4)	114
$O1C - H1C \cdot \cdot \cdot O4^{iii}$	0.82	1.97	2.746 (3)	157
$O2B - H2B \cdot \cdot \cdot O1C^{vi}$	0.82	1.79	2.600 (3)	167
$N21 - H21A \cdot \cdot \cdot O2^{vii}$	0.89	2.01	2.797 (4)	148
N21-H21 A ···O3 ^{vii}	0.89	2.57	3.337 (3)	144
$N21 - H21B \cdot \cdot \cdot OW1^{i}$	0.89	1.92	2.764 (4)	157
$N21 - H21C \cdot \cdot \cdot O3^{i}$	0.89	2.39	3.038 (3)	130
$N21 - H21C \cdot \cdot \cdot O1^{i}$	0.89	2.62	3.477 (5)	161
$O2C-H2C\cdots O2^{viii}$	0.82	2.02	2.764 (3)	151
$OW1 - HW1 \cdots O1^{vi}$	0.81 (5)	1.93 (5)	2.719 (3)	165 (6)
$OW2-HW2\cdots O2C^{ix}$	0.86 (7)	2.07 (7)	2.908 (4)	162 (7)

Symmetry codes: (i) x, y, 1 + z; (ii) $\frac{1}{2} - x, \frac{1}{2} + y, 1 - z$; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, 1 - z$; (iv) $\frac{1}{2} - x, \frac{1}{2} + y, 2 - z$; (v) $\frac{1}{2} - x, y - \frac{1}{2}, 2 - z$; (vi) x, 1 + y, z; (vii) -x, y, 1 - z; (viii) -x, y, 1 - z; (viii) -x, y, 1 - z; (viii)

The H atoms of the water molecules were located by difference Fourier maps and were refined, while all other H atoms were fixed with geometric restraints using *HFIX* and allowed to ride on the parent atom.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *CAD-4 Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 1999); software used to prepare material for publication: *SHELXL*97.

BS and RKR thank the Department of Science and Technology (DST), Government of India, for financial support.

References

- Enraf–Nonius (1989). *CAD*-4 *Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Jeffrey, G. A. & Saenger, W. (1991). In *Hydrogen Bonding in Biological Structures*. Berlin, Heidelberg, New York: Springer-Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lakshiminarayanan, A. V., Sashisekharan, V. & Ramachandran, G. N. (1967). In *Conformation of Biopolymers*, edited by G. N. Ramachandran. London: Academic Press.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Shoemaker, D. P., Donohue, J., Schomaker, V. & Corey, R. B. (1950). J. Am. Chem. Soc. 72, 2328–2349.
- Spek, A. L. (1999). *PLATON for Windows*. Utrecht University, The Netherlands.
- Swaminathan, P. & Srinivasan, R. (1975). Acta Cryst. B31, 217-221.
- Vijayan, M. (1988). Prog. Biophys. Mol. Biol. 52, 71-99.